

Rachit Dubey rdubey@princeton.edu

What (computational) cognitive science can and should do to combat the climate crisis

Goal for the talk

My current work in this direction

My future plans and vision for the field

Share my vision for what (computational) cognitive science can do

(Might skip few technical details and instead focus more on high-level vision)

Source: NASA Goddard Institute for Space Studies

Humanity's footprint on the planet

[Wake et al., 2008; Barosky et al., 2011; Ceballos et al., 2017; Ceballos et al., 2020; IPCC 2023]

Progress on climate action not nearly enough

Increase in cleaner energy

Electrification of personal vehicles

Progress on climate action not nearly enough

Global greenhouse gas emissions pathways

Historical emissions

Pre-Paris (4.1-4.8C)

Oct. 25, 2021 | Source: Climate Action Tracker

Climate change is fundamentally an issue of *human behavior*

What cognitive science can do to help in future

Why climate change doesn't feel like a big problem

Motivate individuals to be more sustainable

Help efforts aiming to bring systemic changes

- Cognitive underpinnings of environmentally-damaging behaviors

What cognitive science can do to help in the short run

Part 1 What cognitive science can do to help in future

1. Understand overconsumption and habituation

Climate change is fueled by overconsumption

Exponential growth in emissions!

1750

Climate change is fueled by overconsumption

just the past 30 years!

- Half the fossil fuels and many
- other resources ever used by
- humans have been consumed in

[Steffen et al., 2015; Rees, 2018]

Growth of clothing sales and decline in clothing utilization since 2000

SOURCE: ELLEN MACARTHUR FOUNDATION GRAPHIC BY: CRYSTAL FANG

2010	2015

Consumption has grown exponentially.. but the planet has not

Number of earths/its resources needed if the world's population lived like the following countries:

Selected countries. Calculated based on 2022 data estimates Source: Global Footprint Network

understand overconsumption

To address environmental issues, it is important to

Why are we consuming so much?

To live the "good life"...?

To increase happiness and well-being?

Is increased consumption increasing happiness?

[Easterlin, 1974; Diener & Diener, 2002; Easterlin et al, 2010]

Is increased consumption increasing happiness?

[Easterlin, 1974; Diener & Diener, 2002; Easterlin et al, 2010]

Material purchases don't necessarily increase happiness [Gilovich & Kumar 2015; Kumar et al., 2020]

Materialistic people are less happy [Chancellor & Lyubomirsky, 2011; Wang et al., 2017]

Happiness depends on two tragic relativities

Habituation

Brickman, 1978 Brickman et al., 1978 Frederick & Loewenstein 1999 Clark et al., 2008

Comparisons

Veenhoven, 1991 Luttmer, 2005 Ball & Chernova, 2008 Herrmann et al., 2019

Happiness depends on two tragic relativities

+

Habituation

[Lyubomirsky & Ross, 1997; Chancellor & Lyubomirsky, 2011; Knight & Gunatilaka, 2012]

Comparisons

...can lead to a vicious cycle of never-ending wants and desires

Happiness depends on two tragic relativities

Habituation

[Lyubomirsky & Ross, 1997; Chancellor & Lyubomirsky, 2011; Knight & Gunatilaka, 2012]

Comparisons +

...can result in depression, materialism, and overconsumption

How habituation and comparisons influence an individual agents' behavior **Dubey**, Griffiths, & Dayan (2022). PLOS Computational Biology

How agents should manage multiple needs Dulberg, Dubey, Berwain, & Cohen (2023). PNAS

How <u>multiple</u> agents can solve a resource consumption problem in the face of habituation and comparisons Future directions

This talk

Research question Why do we habituate and compare?

Dubey, Griffiths, & Dayan (2022). PLOS Computational Biology

These relative features might have offered evolutionary advantages [Nesse, 1990; Buss, 2000; Nesse 2004; Kovac, 2012; Euba, 2021]

Habituation and comparisons might be optimal in presence of uncertainty, noise, or costly computation [Rayo & Becker 2007; Rangel & Clithero 2012; Palminteri & Lebreton, 2021; Hunter & Daw, 2021]

adopting the framework of Reinforcement Learning

Habituation and comparisons could have been favored due to the *learning* advantages they confer

We analyze the costs and benefits of these features by

Dubey, Griffiths, & Dayan (2022). *PLOS Computational Biology*

Study: Why do we habituate and compare? A reinforcement learning perspective on habituation and comparisons

Dubey, Griffiths, & Dayan (2022). PLOS Computational Biology

- Background
- Methods
- Results

Reinforcement Learning

Describes how an agent learns to interact with an environment through *feedback*

Reinforcement Learning Describes how an agent learns to interact with an environment through feedback

What makes a good reward function?

Environment

What reward function should I provide to the agent?

Reward design

[Ng et al., 1999; Singh et al., 2010; Sorg et al., 2018]

Objective reward function: Agent-designer's goal

Objective reward function: Agent-designer's goal

Challenge: Learning from objective rewards alone is very hard

What should the subjective reward function be in the agent's computation?

0

Objective reward function: Agent-designer's goal

Challenge: Learning from objective rewards alone is very hard

Subjective reward function: Agent's reward, provides useful feedback

What should the subjective reward function be in the agent's computation?

Objective reward function: Agent-designer's goal

Challenge: Learning from objective rewards alone is very hard

Subjective reward function: Agent's reward, provides useful feedback

Optimal reward: Subjective reward that bests achieves the designer's objective

Habituation and comparisons as useful reward signals

Environments with $w_2 \neq 0$ and $w_3 \neq 0$ can provide insights!

Objective = r_{t}

Habituate = $r_t - Q(s_t, a_t)$

Compare = r_t – aspiration

Designer's objective: ma

Each possible *subjective* reward function takes the form: $f = w_1$. Objective + w_2 . Habituate + w_3 . Compare

> Derive optimal reward by performing dense grid search over w_i [0 to 1; 0.1]

Also searched aspiration, ϵ , and α

aximize expected return
$$J_t = \sum_{t=t}^T r_t$$

[Baggio & Papyrakis, 2014; Palminteri et al., 2015; Rutledge et al., 2016]

The agent can choose five actions: Up, Down, Right, Left, and Stay

Lifetime learning

Study: Why do we habituate and compare? A reinforcement learning perspective on habituation and comparisons

Dubey, Griffiths, & Dayan (2022). PLOS Computational Biology

- Background
- Methods
- Results

Finding 1: Comparisons significantly speed learning in all environments

Sparse environments

Non-stationary environments

Objective: Get to the food state as quickly as possible

Simple 4-state env

Objective: Get to the food state as quickly as possible

Simple 4-state env

Comparison provides an exploration incentive

Compare [aspiration = 0.9]

Note: number in grid represents value of state

Disclaimer: Comparisons aren't the only way to encourage exploration

Finding 2: exploration induced by optimistic initialization

Exploration induced by comparisons is more efficient than

Comparisons encourage exploration by inducing *pessimism*

Alternative: Encourage exploration via optimistic initialization

Objective agent

0.0	0.0	0.0	0.0	
	▲0.0	0.0	0.0	0.0

[Sutton 1991; Dayan & Sejnowski, 1996]

Optimistic initialization

1.0	1.0	1.0	1.0	
	0.0	1.0	1.0	1.0

Optimism vs. pessimism

Comparison agents perform better than optimistic agents in non-stationary settings

Optimistic initialization is temporary; comparisons are forever

Finding 3: When and why comparisons become *maladaptive*

Comparisons are only useful when aspiration is set properly!

Comparisons are only useful when aspiration is set properly!

The agent is never satisfied with anything in the world!

Comparisons are only useful when aspiration is set properly!

The agent is satisfied too easily!

Comparisons are only useful when aspiration is set properly!

Trade-off between objective and subjective reward

Finding 4: When and why habituation helps an agent

Habituation improves learning in *non-stationary* environments

Study: Why do we habituate and compare? A reinforcement learning perspective on habituation and comparisons

- Dubey, Griffiths, & Dayan (2022). PLOS Computational Biology
- Background
- Methods
- Results
- Takeaways

When and why do habituation and comparisons help us?

These presumable "flaws" play an important role in promoting adaptive behavior

When do they become maladaptive?

constantly bombarded with new luxuries

- They facilitate learning when rewards are infrequent and help adapt to environmental changes

- They can quickly become maladaptive in many modern-day situations, where we are

From a computational viewpoint, it might be *optimal* to design agents that always want more

Requires fundamental investigation on how to manage these biases of the human mind

Implications

Computational perspective: Overconsumption might be a deeply rooted bias

What cognitive science can do to help in future

1. Understand <u>overconsumption</u> and <u>habituation</u>

Computational underpinnings of overconsumption (aka how to be happy with less)

People are willing to pay more for "rare" products [Snyder, 1992; Stephens et al., 2007]

Research question: Why do we cherish rare rewards?

We don't appreciate things when they are widely available [Rothenhoefer et al., 2021] **Research question:** Why does abundance cause value-depreciation?

What cognitive science can do to help in future

1. Understand overconsumption and habituation

2. Understand habituation to worsening events

Previously: How people adapt and get used to **good** things

Extremely cold

Cold

Normal

Dubey, Griffiths, & Dayan (2022). *PLOS Computational Biology*

- ... But people also adapt to **bad** events
- Especially problematic in the context of climate change!

The "Boiling Frog" effect

Humans get used to extreme weather disturbingly fast

RESEARCH ARTICLE | ENVIRONMENTAL SCIENCES |

Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change

Frances C. Moore 🏻 , Nick Obradovich ២ , Flavio Lehner, and Patrick Baylis 🛛 <u>Authors Info & Affiliations</u>

CLIMATE POLITICS SCIENCE

Wildfire smoke reminded people about climate change. How soon will they forget?

Extreme weather and climate-linked disasters don't always lead to changes in public opinion.

History of average winter temperature (°F)

History of lake freeze

Both graphs have the **same** correlation

History of average winter temperature (°F)

History of lake freeze

Study 1, *N* = 799

Perceived change in climate

History of average winter temperature (°F)

History of lake freeze

Both graphs have no underlying changepoint

Study 2 (N = 398)

Do participants perceive a changepoint in the data?

An illusion of changepoint in binary data

Perceived changepoint Not sure No 29% 15% Not sure No 7% 20%

An illusion of changepoint in binary data

Changepoint influences climate perception

An optimal changepoint model explains the illusion

What cognitive science can do to help in future

1. Understand overconsumption and habituation

2. Understand habituation to worsening events

Shifting baseline syndrome (aka boiling frog among generations)

What cognitive science can do to help in future

1. Understand overconsumption and habituation

- 2. Understand habituation to worsening events
- 3. Understand imagination in the context of climate change

Part 2 How cognitive science can help in the short-run

1. Motivate individuals to be more sustainable

Individual actions

Households contribute to 74% of UK's total emissions (Baiocchi et al., 2010)

American homes are one of the largest sources of carbon pollution in the world

If homes in America were a country, they'd rank 6th in annual CO2 emissions.

Households responsible for 20% of energy emissions in US (Goldstein et al., 2020)

Individual actions

Shifting the focus from the average individual to the super-rich is important

[Chancel, 2022; World Inequality Report, 2022]

But this is driven primarily by **wealthy** individuals

This is the case in North America

Individual actions

Shifting the focus from the average individual to the **super-rich** is important

[Chancel, 2022; World Inequality Report, 2022]

But this is driven primarily by **wealthy** individuals

This is the case in North America

Individual actions

Whose emissions to reduce to meet Paris 2030 targets?

[Chancel, 2022; World Inequality Report, 2022]

Individual actions

Whose emissions to reduce to meet Paris 2030 targets?

Motivating the wealthy to reduce consumption

co-lead: Gordon Kraft-Todd

People have "prosocial motivations" [Fehr & Fischbacher, 2003; Zaki & Mitchell, 2011]

In economic games, framing public goods interactions in language emphasizing terms like "community" and "cooperation" leads to greater prosocial behavior [Libermann et al., 2004; Engel & Rand, 2014]

Appeals to "prosocial" motives are more effective than "financial" self-interested appeals [Betsch et al., 2017; Jordan et al., 2020]

Kraft-Todd*, **Dubey***, Yoeli, Rand, Bhanot. Under revision

Research question

Are wealthy more responsive to sustainability messages that emphasize prosocial benefits compared to financial benefits?

Motivating the wealthy to reduce consumption

Study 1: Field experiment of home mailer campaign to N=10,500high-income households in Connecticut, Aug 2017-April 2018

Study 2: Three field experiments (one pre-registered) of Facebook ads across 6 states in New England; 313,764 impressions, 96,892 unique users

Kraft-Todd*, **Dubey***, Yoeli, Rand, Bhanot. Under revision

Motivating the wealthy to reduce consumption

Economic framing

It's YOUR money

Excess water use wastes your money. Find customized tips on how you can save water and benefit your wallet

Prosocial framing

It's OUR environment

Excess water use harms our environment. Find customized tips on how you can save water and benefit Connecticut's environment

Kraft-Todd*, **Dubey***, Yoeli, Rand, Bhanot. Under revision

Implications for motivating the wealthy

Messages that tap into *intrinsic motives* are more powerful than simple economic incentives

11.1 million gallons of water saved

Equivalent to 444,000 showers (10 minutes per shower)

How cognitive science can help current efforts Motivate wealthy individuals to be more sustainable

- 1. Psychology of abundance Perceptions about risks and climate change among the wealthy
- 2. Driving climate action among the wealthy Focus on people who *already* believe in climate change Large-scale field studies testing multiple interventions at once

When does having too much influence cognition & decision-making? Modeling and understand "not in my backyard" (Stokes et al., 2023)

How cognitive science can help current efforts

Motivate wealthy individuals to be more sustainable

Help efforts aiming to bring systemic changes

Important to enact ambitious green **policies** to implement systemic changes

Polarization about climate policies in the congress

Polarization about climate change within the American public

Climate policies are notoriously difficult to pass

Wind Turbines: Not Green, Not Reliable

Aug 2, 2024 3 min read

Austin Gae

Research Associate, Energy, Climate, and Energy Austin is a Research Associate in the Cent Climate, and Environment at The Heritag

MMENTARY Environment

It's Not Just About Co Deal Is Bad Environme

Nov 15, 2019 3 min read

Nicolas Loris @NiconomistLoris

Former Deputy Director, Thomas A. Roe Institute Nick is an economist who focused on energy, environmental, and regulatory issues as the Herbert and Joyce Morgan fellow.

vironment ter for Energy, ge Foundation.	
ost. The Gree ental Policy,	en New Too
FIG G NE	OPINION COMMENTARY Follow You Would Pay Harris's Wealth Tax The selloff caused by a levy on unrealized capital gains would devastate ordinary investors and 401(k)s.
	By Hal Scott and John Gulliver Sept. 9, 2024 5:17 pm ET → Share AA Resize □ 1463 Listen (3 min)

Even when enacted, climate policies face backlash and are rolled back [Harrison 2012; Martinez-Alvarez et al., 2022]

Yellow jacket movement, France

We need a formal understanding of the psychology of climate policy-making

Al as a cognitive tool to

- Understand psychological factors underlying policies
- Design human-centric policies

Reduce polarization and enhance communication of climate policies

Case study: Sustainable transport policies

Transforming America's car-centric infrastructure is crucial for reducing emissions and addressing social & economic inequality

Veronica O. Davis foreword by tamika l. butler

CLUSIVE A Manifesto for Repairing **Divided** Communities

ION

A common sight in America...

Average European car size vs. American car size

Challenge: Americans are polarized about public transportation and are reluctant to support sustainable transport policies [Nall, 2018; Neves and Brand, 2019]

Building a less car-dependent America

Evoking the imagination as a strategy of influence

[Escalas, 2004; Petrova & Cialdini, 2018]

Dubey, Hardy, Griffiths, and Bhui (2024). *Nature Sustainability*

Building a less car-dependent America

Our cities today Car dependent, congested, & polluted

How they can be in future Walkable, greener, & public transport

Generated using AI

Dubey, Hardy, Griffiths, and Bhui (2024). *Nature Sustainability*

Main Goal: Highlight importance of helping people *imagine* outcomes of sustainable policies

Al merely serves as a tool to generate realistic and personalized images

Increased support for the transport policy that proposed to make US less car-reliant

Our intervention is particularly effective at shifting opinion of Republicans

Dubey, Hardy, Griffiths, and Bhui (2024). *Nature Sustainability*

Building a less car-dependent America [N=1529]

Increased proportion of Republicans are willing to sign the car-free US petition

Dubey, Hardy, Griffiths, and Bhui (2024). Nature Sustainability

- **1. Reduce polarization about green policies Current:** One-shot communication about a policy **Future:** Repeated interactions i.e., dialogues about a policy proposal Akin to simulating a town-hall with a senator or policy-maker, where one can ask questions and address concerns about a policy
- 2. Design human-centric policies Al as a tool to maximize public approval - how can we redesign existing policy proposals such that they are less likely to face public resistance?

Climate change is fundamentally an issue of *human behavior*

What cognitive science can do to help in future Understand cognitive underpinnings of climate inaction

What cognitive science can do to help in the short run

Motivate wealthy individuals to be more sustainable

Understand psychology of climate policy-making

Epilogue: My pessimistic-optimistic vision for the future

Computational cognitive science has a *lot* to offer for climate change research

But we can't probably do much right now... (i.e., climate change) isn't going to be solved with my bite-sized research so far.)

My hope and goal

Help make cognitive science make an integral part of climate policy-making 10-15 years down the line

If we want to make an impact 10-15 years from now, we need to start now

