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ABSTRACT

For much of the global population, climate change appears as a slow, gradual shift in daily weather. This leads
many to perceive its impacts as minor and results in apathy (the “boiling frog” effect). How can we convey
the urgency of the crisis when its impacts appear so subtle? Here, through a series of large-scale cognitive
experiments (N=799), we find that presenting people with binary climate data (e.g., lake freeze history) significantly
increases the perceived impact of climate change (Cohen’s d = 0.40 [0.26, 0.54]) compared to continuous data
(e.g., mean temperature). Computational modeling and follow-up experiments (N=398) suggest that binary data
enhances perceived impact by creating an “illusion” of sudden shifts. Crucially, our approach does not involve
selective data presentation but rather compares different datasets that reflect equivalent trends in climate change
over time. These findings, robustly replicated across multiple experiments, provide a cognitive basis for the “boiling
frog” effect and offer a psychologically grounded approach for policymakers and educators to improve climate
change communication while maintaining scientific accuracy.

Human-caused climate change is already resulting in significant social, economic, and ecological losses[1]. However,
these impacts are not felt uniformly across society. On the one hand, many regions are facing severe climate extremes
daily–such as intense flooding, rampant wildfires, and widespread droughts [2, 3, 4, 5]. On the other hand, a large
portion of the global population is currently experiencing only slow and gradual changes due to climate change,
such as incrementally rising temperatures or sporadic climate-related disasters [6, 7].

The apparent mundanity of these gradual changes is leading to perhaps one of the most troubling outcomes related to
climate change: apathy toward the crisis [8, 9, 10]. Since most people’s climate change judgments are significantly
shaped by their personal experiences [11, 12, 13, 14, 15, 16, 17, 18], and because most local climates are becoming
unstable only at a gradual pace, societies are adjusting to worsening environmental conditions disturbingly fast
[6, 19, 20, 21]. For instance, a recent survey of Floridians found that many people were unable to detect five-year
temperature increases, with their risk perceptions more strongly influenced by personal beliefs and political affiliation
than by actual temperature changes [22]. This widespread inability to perceive gradual climate trends is often
referred to as the “boiling frog” effect, and is giving a false sense of security to the public and lowering collective
motivation to act [9, 23].

The slow burn of climate change raises an important question: how can we convey the urgency of the climate crisis
when many of its effects seem so subtle and gradual? While the field has made significant strides in understanding
the causes and consequences of the “boiling frog” effect, finding ways to break through the indifference remains a
significant challenge.

In this article, we use a cognitive science lens to explore the psychological processes underlying the “boiling frog”
effect and understand how to counteract it. We conduct a systematic investigation using large-scale cognitive
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Figure 1. Experiment 1 stimuli. Examples of graphs presented to participants in Experiment 1, showing the “continuous”
condition (left) and the “binary” condition (right). Both graphs have the same correlation (= 0.47).

experiments and computational modeling to explore how gradually changing climate data influences perceptions of
climate change and identify which data patterns can counteract this effect.

To preview our findings, using a pre-registered experiment (N = 799), we show that people perceive climate change
as having a greater impact when presented with binary climate data (e.g., historical trend of lake freeze) compared to
continuous climate data (e.g., historical trend of mean winter temperature), even with matched correlation levels.
This finding is robust and reproducible, as confirmed by multiple replication studies and experiments with real-world
lake freeze and temperature data. A follow-up experiment (N = 398) reveals that binary data enhances perceived
impact because it creates an “illusion” of sudden changes, even when the underlying data shifts incrementally. To
provide a cognitive basis for this illusion, we employ computational modeling and show that gradual shifts in binary
data are more likely to be perceived as rate changes, while shifts in continuous data are attributed to variance.

Together, these results suggest that binary climate data can amplify the perceived impact of climate change, in part
by creating an illusion of sudden shifts, even when changes are gradual. These findings enhance our understanding
of the “boiling frog” effect and offer a way to make the gradual effects of climate change more salient to the
public.

Results

Experiment 1: Climate change is more salient in binary climate data
To investigate how gradual changes can be made more salient, we conducted a large-scale, pre-registered experiment
(N = 799), examining how binary and continuous climate data influence people’s perception of climate change. The
pre-registration included the data collection protocol, stimuli, and the data analysis plan (https://osf.io/75m
p8).

In the experiment, participants were first introduced to a fictional town called Townsville, known for its chilly winters
and ice-skating activities on the local lake during the holiday months. Participants were then randomly assigned to
one of two conditions: the “continuous” condition or the “binary” condition (see Methods for details).Crucially,
the binary and continuous datasets were generated with matched correlation levels, ensuring that any differences in
perception could be attributed to the format of presentation rather than selective data manipulation (see Methods for
details).

In the “continuous” condition, participants viewed one of 18 graphs showing Townsville’s average winter temperature
history from 1939 to 2019. In the “binary” condition, they viewed one of 18 graphs depicting whether the lake
froze completely during the same period. Importantly, the graphs for both conditions were generated in pairs with
matched correlations, ranging from 0.1 to 0.7 (see Methods). Figure 1 shows an example of a matched correlation
pair (correlation = 0.47). After viewing the graphs, participants rated, on a scale of 1−10, their perceived impact of
climate change on the fictional town, the extent of change in the town’s temperature, and their perception of change
in the frequency of lake freeze.
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Figure 2. Binary data elevates perceived impact of climate change. Violin plots display results from Experiment 1,
showing that participants in the “binary” condition (N = 387) rated the perceived impact of climate change, temperature
change, and freeze frequency change significantly higher than those in the “continuous” condition (N = 379). Colored areas
represent kernel density estimations; the means are indicated by black dots, and vertical lines represent standard errors.

Figure 2 plots the ratings of the participants in both conditions. We first found that the perceived impact of climate
change was significantly higher amongst participants in the “binary” condition (mean (M) = 7.5, s.d. = 2.3)
compared to participants in the “continuous” condition (mean (M) = 6.6, s.d. = 2.2,; t(764) = 5.52, p < 0.001;
Cohen’s d (d) = 0.399). This result was consistently observed across graphs of all correlation levels (see SI for
details). Additionally, participants in the “binary” condition(M = 7.3, s.d. = 2.1), who viewed the lake freeze
graphs, counter-intuitively perceived a stronger trend in increasing temperatures than those in the “continuous”
condition, who viewed the temperature graphs (M = 6.6, s.d. = 2.2; t(764) = 4.48, p < 0.001; d = 0.324). Finally,
participants in the “binary” condition (M = 7.5, s.d. = 2.2) perceived the lake freeze frequency to have changed
more significantly compared to those in the “continuous” condition (M = 6.4, s.d. = 2.3; t(764) = 6.86, p < 0.001;
d = 0.496).

Additional experiments
To ensure the robustness of these effects, we conducted several follow-up experiments. First, we conducted a
replication study (N = 440) and found that the perceived impact of climate change was again amplified in the
“binary” condition compared to the “continuous” condition (refer to Experiment S1 in the SI). Next, to rule out
a potential confound that participants might be failing to identify the increasing trend in the continuous data, we
conducted Experiment S2, (N = 301) where the scatterplot of the continuous data also included a trendline. Again,
the perception of the impact of climate change was higher in the “binary” condition (see Experiment S2 in the SI for
details). Finally, to address a potential limitation that Experiment 1 lacked a neutral control condition to establish a
baseline, we conducted Experiment S3, where we compared the effects of binary and continuous climate data against
a neutral control group that received no climate information. Both binary and continuous data significantly increased
perceived climate change impact compared to the control condition, with binary data again having a stronger impact
than continuous data (see Experiment S3 in the SI).

The above findings highlight the core takeaway of this study – people’s perception of climate change impact is
significantly heightened when viewing binary data compared to continuous data. This effect extends to both concrete
changes (i.e., increasing winter temperatures) and less tangible climate change impacts.

Experiment 2: The binary climate effect extends to real-world climate data
So far, to study people’s perception of climate change in binary and continuous data, we have used simulated data
in our experiments. To increase the ecological validity of our findings, we next conducted an experiment with
real-world lake freeze and temperature data.
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Figure 3. Results of Experiment 2 with real-world temperature and freeze data. Violin plots display participants’ ratings
of climate change impact, temperature change, and freeze frequency change for the two conditions. Means are indicated by
black dots, and vertical lines represent standard errors. Participants in the “binary” condition (N = 116) again rated the impact
of climate change higher compared to the “continuous” condition (N = 119).

We first gathered time series data on lake freeze and mean winter temperature for five intermittently-freezing lakes
that are at high risk of ice loss. To identify these lakes, we selected the five lakes with the strongest correlations in
lake freeze over time from a global database of intermittently freezing lakes [24, 25]. We then extracted historical
mean winter temperatures for these lakes from the Berkeley Earth gridded temperature database [26], matching each
lake’s latitude and longitude coordinates with the corresponding temperature grid box (see Methods).

Participants (N = 247) then took part in an experiment similar to Experiment 1. In the “binary” condition, participants
viewed one of the five graphs depicting lake freeze history, while in the “continuous” condition, they saw one of the
five graphs showing winter temperature history. Unlike Experiment 1, where participants were informed that the
data came from a fictional town, this time, they received contextual information about the actual lake, including its
location and recreational activities offered in the lake (e.g., ice skating, ice fishing, or boating).

As shown in Figure 3, the perceived impact of climate change was significantly higher amongst participants in
the “binary” condition (mean (M) = 7.8, s.d. = 2.0) compared to participants in the “continuous” condition (M
= 6.7, s.d. = 2.3; t(233) = 3.76, p < 0.001; d = 0.491). Further, there was a significant difference in the perception
of change in temperature between participants in the “binary” condition(M = 8.0, s.d. = 1.8) and “continuous”
condition (M = 6.6, s.d. = 2.2; t(233) = 5.36, p < 0.001; d = 0.700). Similarly, participants in the “binary”
condition (M = 8.0, s.d. = 1.9) perceived the lake freeze frequency to have changed more significantly compared
to those in the “continuous” condition (M = 6.3, s.d. = 1.7; t(233) = 6.28, p < 0.001; d = 0.820). These results
extend our findings to real-world lake freeze and temperature data, orienting our findings toward practical climate
communication applications. To ensure the robustness of these findings, we also conducted a replication of this
experiment (refer to Experiment S4 in the SI). The replication confirmed that the “binary” condition again amplified
perceptions of climate change impact, temperature change, and freeze frequency compared to the “continuous”
condition.

Experiment 3: Binary data creates an illusion of a changepoint
What might be causing people to perceive a greater climate impact in binary data? Various explanations exist,
including reduced mental effort [27] and increased emotional valence [28], which we explore further in the Discussion.
In addition to these explanations, we propose that binary data may be further heightening perceptions of climate
change by creating an “illusion” of sudden shifts. This perceived abrupt change in binary data can make the impact
of climate events seem more pronounced.

Formally, a changepoint is defined as a point in a time series where there is a sudden shift in the parameters of the

4



Pr
op

or
tio

n 
of

 R
es

po
ns

es

0

0.35

0.7

0

0.2

0.4

0

0.25

0.5

1940 1975 2010 1940 1975 2010

Low correlation

freeze graph

Low correlation 

temperature graph

Medium correlation 

temperature graph

High correlation 

temperature graph

Medium correlation

freeze graph

High correlation

freeze graph

Climate change impact rating

Histogram of perceived year of changepointb)

c)

Perceived changepoint

a) Perceived changepoint
Yes 

56%

Not sure 

29%

No 

15%

Yes 

73%

Not sure 

20%

No 

7%

Te
m

pe
ra

tu
re

Fr
ee

ze

No/Not sureYes

Temperature Freeze

N=104 N=81 N=151 N=56

Year Year
No/Not sureYes

p < 0.01p < 0.05

Figure 4. Results of Experiment 3. (a) Proportion of participants who responded Yes, Not Sure, and No to the question of
whether a changepoint exists, shown for the “continuous” condition (top) and the “binary” condition (bottom). (b) Histograms
displaying the frequency with which each year was identified as a changepoint across the three different graphs used in the two
conditions. Participants had greater consensus regarding the changepoint locations in the “binary” condition. (c) Violin plots
depicting participants’ ratings of climate change impact, separated by whether they identified a changepoint (Yes) versus those
who did not or were unsure (No + Unsure), across both continuous and binary conditions. Means are marked by black dots, and
vertical lines represent standard errors. The number of participants in each group is shown at the top of the plots.

data distribution, often marked by abrupt changes or jumps [29, 30]. In our experiments, both binary and continuous
data were generated with a constant rate of change, meaning there were no actual changepoints or sudden shifts (see
Methods). We hypothesized, however, that people might perceive the binary data as having sudden shifts, which
could influence their perception of climate change impact.

To test this, we conducted a pre-registered experiment (N = 398) to examine how people perceive changepoints in
binary and continuous climate data (pre-registration link: https://osf.io/2sxer). Similar to Experiment 1,
participants were introduced to a fictional winter town and randomly assigned to either the “continuous” or “binary”
condition (see Methods for details). In the “continuous” condition, participants viewed one of three graphs depicting
the town’s average winter temperature. In the “binary” condition, they viewed one of three graphs showing whether
the lake froze completely over time. After viewing the graphs, participants first answered a multiple-choice question
on whether they observed a changepoint, defined as “any point which has a pronounced deviation from the typical
pattern of temperature/freeze data.” They then used a slider to select the year in which they believed the data had
undergone the largest shift. Finally, participants rated their perceived impact of climate change on the town, the
extent of temperature change, and the frequency of lake freezing on a scale of 1−10.

Figure 4a shows the participants’ responses regarding whether they detected a changepoint in the data. Participants
in the “binary” condition (proportion = 0.73) were more likely to perceive a changepoint compared to those in the
‘continuous’ condition (proportion = 0.56), as confirmed by a two-sample Z-test of proportions (z=−3.47, p< 0.001;
Odds Ratio (OR) = 2.10). Additionally, a higher proportion of participants did not perceive a changepoint in the
“continuous” condition (proportion = 0.15) compared to the “binary” condition (proportion = 0.07; z = 2.53, p =
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0.011; OR = 2.36). The proportion of participants who were unsure about the existence of a changepoint was
also higher in the “continuous” condition (proportion = 0.29) than in the “binary” condition (proportion = 0.20;
z = 2.05, p = 0.041; OR = 1.62).

Participants who viewed the binary data also exhibited greater consensus on the location of the changepoints.
Figure 4b shows how frequently each year was identified as a changepoint in the different graphs for the two
conditions. The distribution of perceived changepoint years in the “binary” condition had lower entropy (H = 3.15)
compared to the “continuous” condition (H = 3.56), indicating that responses in the “binary” condition were more
concentrated around specific years. A follow-up Levene’s test for equality of variances confirmed that the two
samples had different variances, F(390) = 31.91, p < 0.001, with the ratio of the empirical variances being 0.489.
This result suggests that there was greater agreement among participants regarding changepoint locations in the
“binary” condition.

Participants’ perception of changepoints also influenced their reported impact of climate change (Figure 4c). Across
both conditions, those who perceived a changepoint reported a higher impact of climate change (M = 7.6, s.d.= 1.96)
compared to those who did not perceive a changepoint or were unsure (M = 6.7, s.d.= 2.1; t(390) = 4.4, p < 0.001;
d = 0.468). This effect was evident in both conditions: In the “continuous” condition, perceiving a changepoint was
associated with a higher reported impact (M = 7.2, s.d.= 2.0) compared to those who did not perceive a changepoint
or were unsure (M = 6.5, s.d. = 2.1; t(183) = 2.24, p = 0.026; d = 0.332). Similarly, in the “binary” condition,
those who perceived a changepoint reported a higher climate impact (M = 7.9, s.d.= 1.9) compared to those who
did not perceive a changepoint or were unsure (M = 6.9, s.d.= 2.1; t(183) = 2.2, p = 0.013; d = 0.512).

These results suggest that when people perceive climate data as having undergone sudden shifts, then they are more
likely to perceive greater climate impact. Binary data, in particular, is more likely to create the impression of abrupt
changes, even when the underlying data shifts gradually. This tendency to perceive sudden shifts in binary data helps
explain why people may perceive a greater impact of climate change compared to continuous data.

Additional experiment
In addition to the experiment described above, we conducted a follow-up study (N = 200) to investigate whether
emotional valence contributes to the heightened perception of climate change impact in binary data (see Experiment
S5 for details). We varied the emotional valence of binary graphs by using high valence (“Froze” vs. “Did not
Freeze”) versus low emotional labels (“Above 29◦ F” versus “Below 29◦ F”) for the same binary data. We found
that valence partially explains our results when trends were unclear. However, when trends were more evident,
participants exposed to both high and low valence graphs perceived climate change impacts similarly. This suggests
that, in cases of clear trends, the illusion of changepoints may play a more prominent role in driving the amplified
perception of climate change.

Simulation 1: Simulating changepoint detection in binary and continuous data
Why do people perceive sudden shifts in gradual binary data? Here, we develop a Bayesian model of changepoint
detection and show that this optimal model is also prone to exhibiting this illusion. This is because gradual shifts in
binary data are often attributed to changes in the underlying data distribution, while similar shifts in continuous
data are attributed to the distribution’s variance. This suggests that the changepoint illusion is perhaps an inherent
property of gradual binary data.

An optimal Bayesian model of changepoint detection
Consider the task of identifying where a pattern changes in a sequence of events. In binary data (e.g., coin flips), a
shift might involve changing the probability of heads versus tails. In continuous data (e.g., temperature readings), it
could mean a change in the average temperature. Using Bayesian modeling, we estimate these shifts by calculating
the probability of a changepoint at each position.

Formally, let X be a series of observations of length N. The decision-maker’s objective is to identify changepoints,
where the statistical properties of the data alter. A changepoint δ at position i indicates that the data before i follows
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a distribution with parameters θ1, and the data after follows a different distribution with parameters θ2 [31].

Given the observed data X, the probability of a changepoint at i i.e., P(δ = i|X), can be computed using Bayes’
rule:

P(δ = i|X) ∝ P(X|δ = i)P(δ = i), (1)

where P(X|δ = i) is the likelihood of the data given a changepoint at index i, and P(δ = i) is the prior probability
of a changepoint at index i before observing the data. Equation 1 allows the decision-maker to update their belief
about the presence of a changepoint by considering both the evidence from the data and any prior assumptions about
where changepoints might occur.

In the simplest case, the decision-maker a priori assumes that each point in time is equally likely to be a changepoint
and uses a uniform prior for P(δ = i). The likelihood P(X|δ = i) depends on assumptions about the data’s underlying
distribution.

For binary data, we assume a Bernoulli distribution, modeling outcomes with two possible values, such as success or
failure. We further assume that each observation is independent and identically distributed (i.i.d.) within segments.
If there is a changepoint at i, then {x1, . . . ,xi} are sampled from a Bernoulli distribution with parameter θ1, and
{xi+1, . . . ,xN} are sampled from a Bernoulli distribution with parameter θ2. Using Equation 1, the probability for a
changepoint at i in the binary setting can be calculated as follows:

P(δ = i|X) ∝ P(δ = i) ·
i

∏
t=1

P(xt |θ1) ·
N

∏
t=i+1

P(xt |θ2), (2)

where ∏
i
t=1 P(xt |θ1) is the likelihood of the data {x1, . . . ,xi} being generated from a Bernoulli distribution with

parameter θ1 and ∏
N
t=i+1 P(xt |θ2) is the likelihood of the data {xi+1, . . . ,xN} being generated from a different

Bernoulli distribution with parameter θ2.

For continuous data, we assume a Normal distribution, which is suitable for modeling continuously varying data
like temperature readings. If a changepoint is present at i, the data before the changepoint is modeled by a Normal
distribution with mean µ1 and variance σ2, and the data after i follows a Normal distribution with a different mean
µ2 and the same variance σ2. The probability for a changepoint is calculated as follows:

P(δ = i|X) ∝ P(δ = i) ·∏i
t=1

1√
2πσ2 exp

(
− (xt−µ1)

2

2σ2

)
·∏N

t=i+1
1√

2πσ2 exp
(
− (xt−µ2)

2

2σ2

)
. (3)

Equations 2 and 3 enable us to calculate the probability of a changepoint at any point i for both binary and continuous
settings (refer to the SI for detailed derivations and final equations).

Explaining the illusion of changepoints in binary data
To simulate changepoint detection in binary and continuous data, we first generated 30 pairs of gradually changing
time series data (both binary and continuous) across various matched correlation levels, ranging from 0.1 to 0.7. We
then computed the changepoint probability for the different points in the data (using Equations 2 and 3).

Similar to the results of Experiment 2, we found that the entropy of the changepoint probability distributions for the
binary time series (mean Entropy = 2.9, s.d. = 0.8) was lower compared to the entropy of the changepoint probability
distributions for the continuous time series (mean Entropy = 3.3, s.d. = 0.5; t(58) =−2.79, p = 0.009; d = 0.509).
That is, similar to the human participants, the Bayesian model is also more likely to detect changepoints in binary
data, as evidenced by higher probabilities and sharper peaks at specific points, alongside generally lower entropy.
As an illustration, Figure 5 plots the changepoint probability output of the Bayesian model for different binary
and continuous graphs across various correlation levels. The changepoint probability distribution exhibits more
pronounced peaks in binary data, and the model is more likely to detect changepoints in binary data, particularly as
correlation increases.
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Figure 5. Simulation results. An illustration of how gradual changes are perceived as sudden changes in binary data. The top
panel shows the changepoint probability output of the Bayesian model for various correlation levels in temperature data. In
most graphs, there is a somewhat uniform distribution of changepoint probabilities, with no specific concentration at any point.
In contrast, the bottom panel shows that binary data results in more pronounced peaks in the changepoint probability
distribution, particularly as correlation increases. Note that these are example illustrations and do not represent all graphs used
in the simulation experiment.

One key reason why the probability of changepoints is lower in continuous data is that gradual shifts are often
“absorbed” by the variance of the normal distribution. To further investigate this, we conducted an additional
simulation where we fitted the continuous data using a normal distribution with a variance significantly smaller
than the true variance of the data (we used σ2 = 1, which is 2.6 times lower than the true variance). Here, the
model became more sensitive to subtle changes and resulted in a more peaked posterior distribution of changepoint
locations (refer to SI for details). This suggests that the apparent changepoints in binary data may be an inherent
feature of binary patterns, whereas continuous data, with its implicit variance, naturally smoothes out gradual
changes.

Discussion
For a long time, many scientists, including the authors of this study, held onto the hope that when the impacts of
climate change became undeniable, people and governments would finally act decisively [7]. Perhaps a devastating
hurricane, heat wave, or flood–or even a cascade of disasters–would make the severity of the problem impossible
to ignore, spurring large-scale action. Yet, our response continues to resemble the fate of the proverbial boiling
frog, failing to notice the creeping danger until it’s too late [9]. The most unsettling possibility is that we might
continue sleepwalking into disaster; the atmosphere will keep growing unstable, but not dramatically or fast enough
to command sustained attention, allowing climate change to be treated as a gradual background noise.

Here, through multiple cognitive studies, we demonstrate that presenting climate data in binary terms can make
the impacts of climate change more salient compared to continuous data. Gradual shifts in binary data often create
the perception of sudden changes, amplifying the perceived impact. Importantly, our approach does not involve
selective data presentation but rather compares datasets with matched correlation levels in different formats (binary
vs. continuous), ensuring transparency and accuracy in climate change communication. While our study shows how
progress can be made in enhancing the salience of climate change–an essential first step toward more meaningful
engagement and response–future work should investigate how this work can be extended to drive concrete action.
In the remainder of the article, we discuss applications to real-world climate communication, consider alternative
explanations for the heightened salience of binary data, and outline limitations and future directions.
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Practical implications for climate communication
There are immediate practical applications to these findings, particularly in the design and visualization of climate
data. An extensive body of research has studied the cognitive processes underlying effective visualizations [32,
33, 34, 35] and highlighted the importance of effective climate data visuals [36, 37, 38, 39, 40, 41]. Our study
contributes to this literature by emphasizing the value of binary climate graphs and suggesting key directions for
improving climate communication.

For instance, policymakers and journalists could use binary visuals to simplify complex climate data and make it
more relatable for the public. Rather than showing gradual temperature increases, reports could highlight clear shifts,
such as the loss of white Christmases, the inability to ice-skate in winters, or summer outdoor activities disrupted
by wildfire pollution. These representations could make the data more accessible and evoke stronger emotional
responses, encouraging action. This approach could also help communities understand how their local climate is
changing. For example, in areas where rainfall patterns are changing and/or where droughts are becoming more
frequent, binary data could highlight the worsening of drought conditions by illustrating the shift from occasional to
recurring severe droughts. This could help communities recognize how once-rare events are becoming increasingly
common. However, it is important that such visuals are used responsibly, ensuring that they accurately represent
the underlying data and do not mislead the public. We suggest that binary visuals should be presented alongside
continuous data when possible, allowing audiences to understand both the gradual trends and the more salient
shifts.

Our findings also provide an explanation for the popularity of the “climate stripes” visual [42]. By using color
gradients to distinguish between above-average and below-average temperatures, the stripes simplify a gradual trend
into a clear, binary-like shift. This binary structure enhances the perception of climate change, which may explain
their widespread resonance in public discourse. Future tools, such as interactive dashboards, could allow users to
toggle between binary and continuous visuals, leading to a greater sense of urgency.

Relevance to changepoint detection and biases
Beyond its practical implications, our work also makes significant theoretical contributions, particularly in under-
standing how people reason about change. Detecting and responding to changes is crucial for decision-making, and
psychologists have extensively studied how people identify changes in data patterns and when they tend to underreact
or overreact [43, 44, 45, 46, 30, 47, 48]. These studies typically involve detecting changes in non-stationary
environments–where data suddenly shifts from one distribution to another. In contrast, our study examined data that
gradually shifted over time without sudden changes. In doing so, we uncovered a bias about how people perceive
sudden shifts in gradual binary data more readily than in continuous data. This phenomenon is somewhat analogous
to the “hot hand” fallacy, where people tend to see patterns in random sequences [49]. However, unlike the “hot
hand” studies, which explore perceptions of randomness [50, 51], our study used clear, gradually increasing patterns
and still found that people perceived abrupt changes in binary data. By focusing on how people interpret slowly
changing data and identifying key biases in these patterns, our study enhances the understanding of change detection
and response, complementing prior research focused on more abrupt or dramatic changes.

Alternative explanations for the perceived binary data effect
While our study primarily focused on how perceptions of changepoints might amplify the perceived impacts of
climate change in binary data, it’s important to recognize that there are several other factors that could be contributing
to this heightened perception. One reason may be that binary data graphs could be reducing cognitive load and are
computational easier to parse due to fewer value comparisons [52, 53, 54, 27, 55]. Another possibility is that lake
freeze graphs might elicit stronger emotional responses than temperature graphs (e.g., people might relate more to
the consequences of decreased freeze, such as fewer opportunities for ice-skating). This is consistent with research
showing that emotional valence affects climate judgments [56, 28, 57, 58] as well as perceptions of changes and
tipping points [59, 60] (see also Experiment S5).

Another possible explanation for our findings is grounded in construal level theory, which suggests that psychologi-
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cally distant events (e.g., abstract temperature trends) are processed at a higher construal level, while more proximal
events (e.g., a freezing lake) evoke lower-level, concrete thinking [61]. Binary data, by highlighting specific, tangible
changepoints (e.g., “froze” vs. “did not freeze”), may serve as a construal-level manipulation, bringing the impacts
of climate change closer to participants’ experiences. Thus, binary climate data can help ground abstract impacts
of climate change in concrete and relatable terms. This finding contributes to the existing literature on construal
level theory and climate change [62, 63] and also suggests a potential low-cost intervention to counteract climate
apathy.

Another explanation is that perceiving changepoints in binary data may signal a tipping point, leading people to
believe that significant changes have occurred [64, 59, 60]. Recent research shows that people have a “binary
bias”, where they tend to categorize continuous data into binary terms, which then biases their decision-making
[65, 66]. Our study contributes to this literature by documenting a specific bias within the context of binary data
perception. Relatedly, binary data may influence how people infer future trends, particularly regarding perceptions
of irreversibility or tipping points. People often project social and historical trends forward to anticipate future
outcomes [67]. By creating an illusion of a changepoint, binary data may evoke a stronger sense of irreversible
change, influencing how people perceive the urgency and impacts of climate change.

Limitations and future work
While our study focused on how different formats of climate data affect perceptions of climate change impacts, it is
also crucial to examine how people respond to these changes over time. An important barrier to climate action is that
people tend to rapidly adapt and habituate to worsening environmental conditions [68, 69]. This tendency to adjust
to new “normals,” whether positive or negative, is a pervasive aspect of human behavior [70, 71]. Future research
should explore how sensitivity to persistent environmental changes evolves and whether binary data patterns could
help mitigate such adaptation. For instance, would people be less likely to become accustomed to a lake that has
abruptly stopped freezing or a town that has suddenly become much hotter?

While binary data can enhance salience, it also risks oversimplifying complex climate issues, potentially leading to
misinterpretation or distortion of the facts. Future research should explore ways to present binary data that conveys
critical information without losing complexity. For example, combining binary visuals with continuous data or
providing additional context could help people better understand the nuances of climate change. Additionally, while
binary data may initially heighten perception, it is unclear whether this effect persists over time. Future studies
should investigate whether repeated exposure leads to reduced sensitivity and how to mitigate this effect.

Another limitation of our study is that participants observed the data in a single sitting and processed it retrospec-
tively. In real-world settings, people experience climate change not only retrospectively (e.g., via graphs or media
communications) but also through their direct, lived experiences, encountering data incrementally over time rather
than all at once. Future research should investigate climate change perception when data is presented sequentially, as
this approach could more accurately reflect how individuals encounter and process climate information in their daily
lives.

Conclusion
Combating climate change apathy is a vital step towards slowing the progression of warming. We posit that building
an understanding of how people reason about change is key to overcoming this apathy. Given that climate impacts
are often non-linear and threshold-bound [72, 73], we need more strategic communication. Rather than warning
the frog that the water is warming gradually, we should define a clear threshold for unacceptable conditions. It’s a
straightforward binary variable.

Methods
All experiments were approved by Princeton’s Institutional Review Board (IRB 10859). For all experiments,
informed consent was obtained from all participants before the experiments began. Each participant could participate
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in only one experiment (including pilots). Note that we did not collect any demographic information (e.g., gender
or age) about the participants for the experiments. For all experiments, participants were randomly assigned
to the different conditions and they were blind to which conditions there were assigned to. Experiment 1 was
pre-registered on May 29, 2024 and it included the data collection protocol, stimuli, and the data analysis plan
(https://osf.io/75mp8). Experiment 3 was pre-registered on July 3, 2024 and also included the data
collection protocol, stimuli, and the data analysis plan (https://osf.io/2sxer).

Generation of binary and continuous climate data
For our experiments, we generated paired time series with 80 data points each across a correlation range of 0.1 to
0.7. Each pair included a binary and a continuous time series with matched correlations.

To generate the binary data with the desired correlation, we employed an iterative algorithm that adjusted the slope
and intercept of a linear model until the correlation fell within the specified range. The slope was determined
through a linear search, and the y-intercept was set so that the probability of freezing was 0.5 at the midpoint of
the time series, ensuring a smooth, gradual change in probability over time (refer to the SI for the algorithm’s
pseudo-code).

For each binary time series, we generated the corresponding continuous data by applying a linear transformation
to exactly match the correlation level (refer to SI for details). The transformed continuous data was then adjusted
to match the mean and variance of winter temperatures from the Berkeley Earth dataset [26] for 31 intermittently
freezing lakes [24]. All experiment stimuli and the code to generate them are publicly available here: https://gi
thub.com/graliuce/climate_change_detection/tree/main/experiment_stimuli

Experiment 1
For the experiment, we first generated 18 paired time series across the correlation range of (0.1−0.7) for a total of
36 time series. We then recruited 799 US-based participants from the online research platform Prolific and paid
them US$0.40 for participation (our study took approximately 2 minutes to complete).

Following the pre-registered exclusion criteria, we removed participants who did not pass a simple attention check
question or those who viewed the graphs for less than two seconds. This led to the exclusion of 33 participants,
leaving a final sample of 766 participants (N = 379 in the “continuous” condition and N = 387 in the “binary”
condition). Code for reproducing the results of all experiments is available here: https://github.com/gra
liuce/climate_change_detection/tree/main

Participants were randomly assigned to either the “continuous” or “binary” condition. In the “continuous” condition,
they viewed one of 18 continuous graphs, randomly sampled, with the y-axis labeled as mean winter temperature
and the x-axis representing years (1939−2019). In the “binary” condition, participants saw one of 18 binary graphs,
randomly sampled, with the y-axis indicating whether the lake froze and the x-axis showing years (1939−2019).
After viewing the graphs, participants in both conditions were asked to provide, on a scale of 1−10, their subjective
rating in response to the following questions:

1. In your view, how much do you think Townsville has been affected by climate change? (where 1 indicates
“not affected at all” and 10 indicates “extremely affected”).

2. In your view, how much do you think the temperature of Townsville has changed in the last 50 years? (where
1 indicates “remained the same” and 10 indicates “changed a lot”).

3. In your view, how much do you think the frequency at which the lake freezes has changed in Townsville in the
last 50 years? (where 1 indicates “remained the same” and 10 indicates “changed a lot”).

Question 1 measured perceptions of the overall impact of climate change, while Questions 2 and 3 evaluated
perceptions of changes in temperature and lake freezing frequency.
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Experiment 2
We recruited 247 US-based participants from the online research platform Prolific, paying US$0.40 for participation
(the study took approximately 2 minutes to complete). We removed participants who failed a simple attention check
or viewed the graphs for less than two seconds, resulting in the exclusion of 12 participants. This left a final sample
of 235 participants (N = 119 in the “continuous” condition and N = 116 in the “binary” condition).

This experiment aimed to replicate Experiment 1 using real-world lake freeze and temperature data. We first obtained
publicly available ice-on and ice-off records for 31 intermittently freezing lakes across the Northern Hemisphere
[24], including freeze records for Lake Vattern from the NSIDC Global Lake and River Ice Phenology Database [25].
We then filtered the data to include only lakes with more than five no-freeze years in the 20th century, leaving 20
lakes. From these, for our experiment, we selected the five lakes with the highest correlations in freeze trends over
time. Historical mean winter temperatures (December, January, February) for these lakes were extracted from the
Berkeley Earth gridded temperature database [26], matched to the lakes’ latitude and longitude coordinates.

Participants took part in a similar experiment to Experiment 1 but were given additional information about the lake
relevant to the stimulus, including details about the location and recreational activities offered in the lake.

Experiment 3
For the experiment, we generated 3 pairs of time series, totaling 6 time series. Each pair covered a distinct correlation
range: one with low correlation (0.1–0.3), one with medium correlation (0.3–0.5), and one with high correlation
(0.5–0.7). We then recruited 398 US-based participants from the online research platform Prolific, paying US$0.40
for participation (the study took approximately 2 minutes to complete). Following our pre-registered exclusion
criteria, we removed participants who failed a simple attention check or viewed the graphs for less than two seconds,
resulting in the exclusion of 8 participants. This left a final sample of 392 participants (N = 185 in the “continuous”
condition and N = 207 in the “binary” condition).

Participants then took part in an Experiment similar to Experiment 1, with two additional questions. First, after
viewing the “binary” or “continuous” graph, participants were asked whether they observed a changepoint, choosing
from “Yes,” “No,” or “Not sure.” A changepoint was defined as “a point showing a pronounced deviation from the
typical pattern of temperature or freeze data.” Second, after answering this question, participants were then asked to
use a slider to indicate the year where they noticed the most pronounced shift from the typical pattern.

Simulation 1
For the simulation, we generated 30 pairs of time series data across the correlation range [0.1,0.7], with 5 pairs per
interval of 0.1 correlation increase, for a total of 60 time series. We then used our model to compute the changepoint
probability for each point in every time series and evaluated changepoint detection performance between continuous
and binary data.

Data Availability
Anonymized participant data for all our experiments is available at: https://github.com/graliuce/cl
imate_change_detection/

Code Availability
The code to run the analyses and reproduce the figures is available on GitHub: https://github.com/grali
uce/climate_change_detection/
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