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ABSTRACT

For much of the global population, climate change appears as a slow, gradual shift in daily weather. This leads many
to perceive its impacts as minor and results in apathy (the “boiling frog” effect). How can we convey the urgency of
the crisis when its impacts appear so subtle? Here, through a series of large-scale behavioral experiments, we
show that presenting people with binary climate data (e.g., lake freeze history) significantly heightens the perceived
impact of climate change compared to continuous data (e.g., mean temperature). Computational modeling and
follow-up experiments suggest that binary data elevates perceived impact because it creates an “illusion” of sudden
shifts. This effect is robustly confirmed through multiple replications and an experiment with real-world freeze and
temperature data. These findings provide a cognitive basis for the “boiling frog” effect and offer a novel approach
for policymakers and educators to better communicate the urgency of climate change.

Human-caused climate change is already resulting in significant social, economic, and ecological losses1. However,1

these impacts are not felt uniformly across society. On the one hand, many regions are facing severe climate extremes2

daily–such as intense flooding, rampant wildfires, and widespread droughts2–5. On the other hand, a significant3

portion of the global population is currently experiencing only slow and gradual changes due to climate change,4

such as incrementally rising temperatures or sporadic climate-related disasters6, 7.5

The apparent mundanity of these gradual changes is leading to perhaps one of the most troubling outcomes related6

to climate change: growing indifference toward the crisis. Since most people’s climate change judgments are7

significantly shaped by their personal experiences8–14, and because most local climates are becoming unstable only8

at a gradual pace, societies are adjusting to worsening environmental conditions disturbingly fast6, 15–17. For instance,9

a recent survey of Floridians found that many people were unable to detect five-year temperature increases, with10

their risk perceptions more strongly influenced by personal beliefs and political affiliation than by actual temperature11

changes18. This widespread inability to perceive gradual climate trends is often referred to as the “boiling frog”12

effect, and is giving a false sense of security to the public and lowering collective motivation to act19, 20.13

The slow burn of climate change raises an important question: how can we convey the urgency of the climate crisis14

when many of its effects seem so subtle and gradual? While the field has made significant strides in understanding15

the causes and consequences of the “boiling frog” effect, finding ways to break through the indifference remains a16

significant challenge.17

In this article, we use a cognitive science lens to explore the psychological processes underlying the “boiling frog”18

effect and understand how to counteract it. We conduct a systematic investigation using large-scale behavioral19

experiments and computational modeling to explore how gradually changing climate data influences perceptions of20

climate change and identify which data patterns can counteract this effect.21

To preview our findings, using a pre-registered behavioral experiment (N = 799), we show that people perceive22
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climate change as having a greater impact when presented with binary climate data (e.g., historical trend of lake23

freeze) compared to continuous climate data (e.g., historical trend of mean winter temperature), even with matched24

correlation levels. This finding is robust and reproducible, as confirmed by multiple replication studies. A follow-up25

experiment (N = 398) reveals that binary data enhances perceived impact because it creates an “illusion” of sudden26

changes, even when the underlying data shifts incrementally. To provide a cognitive basis for this illusion, we27

employ computational modeling and show that gradual shifts in binary data are more likely to be perceived as rate28

changes, while shifts in continuous data are attributed to variance. Finally, a follow-up experiment with real-world29

lake freeze and temperature data (N = 247) shows that participants consistently perceive climate change as more30

severe with lake freeze data than with temperature data.31

Together, these results suggest that binary climate data can amplify the perceived impact of climate change, in part32

by creating an illusion of sudden shifts, even when changes are gradual. These findings enhance our understanding33

of the “boiling frog” effect and offer a novel approach to making the gradual effects of climate change more salient34

to the public.35

Results36

Experiment 1: Climate change is more salient in binary climate data37

To investigate how gradual changes can be made more salient, we conducted a large-scale, pre-registered behavioral38

experiment (N = 799), examining how binary and continuous climate data influence people’s perception of climate39

change. The pre-registration included the data collection protocol, stimuli, and the data analysis plan (https:40

//osf.io/75mp8).41

In the experiment, participants were first introduced to a fictional town called Townsville, known for its chilly winters42

and ice-skating activities on the local lake during the holiday months. Participants were then randomly assigned to43

one of two conditions: the “continuous” condition or the “binary” condition (see Methods for details).44

In the “continuous” condition, participants viewed one of 18 graphs showing Townsville’s average winter temperature45

history from 1939 to 2019. In the “binary” condition, they viewed one of 18 graphs depicting whether the lake froze46

completely during the same period. Crucially, the graphs for both conditions were generated in pairs with matched47

correlations, ranging from 0.1 to 0.7 (see Methods). Figure 1a shows an example of a matched correlation pair48

(correlation = 0.47). After viewing the graphs, participants rated, on a scale of 1−10, their perceived impact of49

climate change on the fictional town, the extent of change in the town’s temperature, and their perception of change50

in the frequency of lake freeze.51

Figure 1b plots the ratings of the participants in both conditions. We first found that the perceived impact of52

climate change was significantly higher amongst participants in the “binary” condition (mean (M) = 7.5, s.d. = 2.3)53

compared to participants in the “continuous” condition (mean (M) = 6.6, s.d. = 2.2; t(764) = 5.52, p < 0.0001).54

This result was consistently observed across graphs of all correlation levels (see SI for details). Additionally,55

participants in the “binary” condition(M = 7.3, s.d. = 2.1), who viewed the lake freeze graphs, counter-intuitively56

perceived a stronger trend in increasing temperatures than those in the “continuous” condition, who viewed the57

temperature graphs (M = 6.6, s.d. = 2.2; t(764) = 4.48, p < 0.0001). Finally, participants in the “binary” condition58

(M = 7.5, s.d. = 2.2) perceived the lake freeze frequency to have changed more significantly compared to those in59

the “continuous” condition (M = 6.4, s.d. = 2.3; t(764) = 6.86, p < 0.0001).60

To ensure the robustness of these effects, we conducted a replication study (N = 440) and found that the perceived61

impact of climate change was again amplified in the “binary” condition compared to the “continuous” condition62

(refer to SI). To rule out a potential confound that participants might be failing to identify the increasing trend in the63

continuous data, we conducted a control experiment (N = 301) where the scatterplot of the continuous data also64

included a trendline. Again, the perception of the impact of climate change was higher in the “binary” condition (see65

SI for details).66
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Figure 1. Binary data elevates perceived impact of climate change (a) Examples of graphs presented to participants in
Experiment 1, showing the “continuous” condition (left) and the “binary” condition (right). Both graphs have the same
correlation (= 0.47). (b) Participants in the “binary” condition rated the perceived impact of climate change, temperature
change, and freeze frequency change significantly higher than those in the “continuous” condition. The violin plots (colored
areas) are kernel density estimations; the means are indicated by black dots, and vertical lines represent standard errors.

The above findings highlight the core takeaway of this study – people’s perception of climate change impact is67

significantly heightened when viewing binary data compared to continuous data. This effect extends to both concrete68

changes (i.e., increasing winter temperatures) and less tangible climate change impacts.69

Experiment 2: Binary data creates an illusion of a changepoint70

What might be causing people to perceive a greater climate impact in binary data? Various explanations exist,71

including reduced mental effort21 and increased emotional valence22, which we explore further in the Discussion.72

In addition to these explanations, we propose that binary data may be further heightening perceptions of climate73

change by creating an “illusion” of sudden shifts. This perceived abrupt change in binary data can make the impact74

of climate events seem more pronounced.75

Formally, a changepoint is defined as a point in a time series where there is a sudden shift in the parameters of the76

data distribution, often marked by abrupt changes or jumps23, 24. In our experiments, both binary and continuous77

data were generated with a constant rate of change, meaning there were no actual changepoints or sudden shifts (see78

Methods). We hypothesized, however, that people might perceive the binary data as having sudden shifts, which79

could influence their perception of climate change impact.80

To test this, we conducted a pre-registered behavioral experiment (N = 398) to examine how people perceive81

changepoints in binary and continuous climate data (pre-registration link: https://osf.io/2sxer). Similar82

to Experiment 1, participants were introduced to a fictional winter town and randomly assigned to either the83

“continuous” or “binary” condition (see Methods for details). In the “continuous” condition, participants viewed one84

3/14

https://osf.io/2sxer


Pr
op

or
tio

n 
of

 R
es

po
ns

es

0

0.35

0.7

0

0.2

0.4

0

0.25

0.5

1940 1975 2010 1940 1975 2010

Low correlation

freeze graph

Low correlation 

temperature graph

Medium correlation 

temperature graph

High correlation 

temperature graph

Medium correlation

freeze graph

High correlation

freeze graph

Climate change impact rating

Histogram of perceived year of changepointb)

c)

Perceived changepoint

a) Perceived changepoint
Yes 

56%

Not sure 

29%

No 

15%

Yes 

73%

Not sure 

20%

No 

7%

Te
m

pe
ra

tu
re

Fr
ee

ze

No/Not sureYes

Temperature Freeze
* **

N=104 N=81 N=151 N=56

Year Year
No/Not sureYes

Figure 2. Results of Experiment 2. (a) Proportion of participants who responded Yes, Not Sure, and No to the question of
whether a changepoint exists, shown for the “continuous” condition (top) and the “binary” condition (bottom). (b) Histograms
displaying the frequency with which each year was identified as a changepoint across the three different graphs used in the two
conditions. Participants had greater consensus regarding the changepoint locations in the “binary” condition. (c) Violin plots
depicting participants’ ratings of climate change impact, separated by whether they identified a changepoint (Yes) versus those
who did not or were unsure (No + Unsure), across both continuous and binary conditions. Means are marked by black dots, and
vertical lines represent standard errors. The number of participants in each group is shown at the top of the plots.

of three graphs depicting the town’s average winter temperature. In the “binary” condition, they viewed one of three85

graphs showing whether the lake froze completely over time. After viewing the graphs, participants first answered a86

multiple-choice question on whether they observed a changepoint, defined as “any point which has a pronounced87

deviation from the typical pattern of temperature/freeze data.” They then used a slider to select the year in which88

they believed the data had undergone the most significant shift. Finally, participants rated their perceived impact89

of climate change on the town, the extent of temperature change, and the frequency of lake freezing on a scale of90

1−10.91

Figure 2a shows the participants’ responses regarding whether they detected a changepoint in the data. Participants92

in the “binary” condition (proportion = 0.73) were more likely to perceive a changepoint compared to those in the93

‘continuous’ condition (proportion = 0.56), as confirmed by a two-sample Z-test of proportions (z = −3.47, p <94

0.0001). Additionally, a higher proportion of participants did not perceive a changepoint in the “continuous”95

condition (proportion = 0.15) compared to the “binary” condition (proportion = 0.07, z = 2.53, p = 0.011). The96

proportion of participants who were unsure about the existence of a changepoint was also higher in the “continuous”97

condition (proportion = 0.29) than in the “binary” condition (proportion = 0.20, z = 2.05, p = 0.041).98

Participants who viewed the binary data also exhibited greater consensus on the location of the changepoints.99

Figure 2b shows how frequently each year was identified as a changepoint in the different graphs for the two100

conditions. The distribution of perceived changepoint years in the “binary” condition had lower entropy (H = 3.15)101

compared to the “continuous” condition (H = 3.56), indicating that responses in the “binary” condition were more102

concentrated around specific years. A follow-up Levene’s test for equality of variances confirmed that the two103
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samples had different variances, F(390) = 31.91, p < 0.0001, with the ratio of the empirical variances being 0.489.104

This result suggests that there was greater agreement among participants regarding changepoint locations in the105

“binary” condition.106

Participants’ perception of changepoints also influenced their reported impact of climate change (Figure 2c).107

Across both conditions, those who perceived a changepoint reported a higher impact of climate change (M = 7.65,108

s.d.= 1.96) compared to those who did not perceive a changepoint or were unsure (M = 6.7, s.d.= 2.1; t(390) = 4.4,109

p < 0.0001). This effect was evident in both conditions: In the “continuous” condition, perceiving a changepoint110

was associated with a higher reported impact (M = 7.21, s.d. = 2.0) compared to those who did not perceive a111

changepoint or were unsure (M = 6.53, s.d.= 2.1; t(183) = 2.24, p = 0.026). Similarly, in the “binary” condition,112

those who perceived a changepoint reported a higher climate impact (M = 7.95, s.d.= 1.9) compared to those who113

did not perceive a changepoint or were unsure (M = 6.95, s.d.= 2.1; t(183) = 2.2, p = 0.013).114

These results suggest that when people perceive climate data as having undergone sudden shifts, then they are more115

likely to perceive greater climate impact. Binary data, in particular, is more likely to create the impression of abrupt116

changes, even when the underlying data shifts gradually. This tendency to perceive sudden shifts in binary data helps117

explain why people may perceive a greater impact of climate change compared to continuous data.118

Simulation 1: Simulating changepoint detection in binary and continuous data119

Why do people perceive sudden shifts in gradual binary data? Here, we develop a Bayesian model of changepoint120

detection and show that this optimal model is also prone to exhibiting this illusion. This is because gradual shifts in121

binary data are often attributed to changes in the underlying data distribution, while similar shifts in continuous122

data are attributed to the distribution’s variance. This suggests that the changepoint illusion is perhaps an inherent123

property of gradual binary data.124

An optimal Bayesian model of changepoint detection125

Consider the task of identifying where a pattern changes in a sequence of events. In binary data (e.g., coin flips), a126

shift might involve changing the probability of heads versus tails. In continuous data (e.g., temperature readings), it127

could mean a change in the average temperature. Using Bayesian modeling, we estimate these shifts by calculating128

the probability of a changepoint at each position.129

Formally, let X be a series of observations of length N. The decision-maker’s objective is to identify changepoints,130

where the statistical properties of the data alter. A changepoint δ at position i indicates that the data before i follows131

a distribution with parameters θ1, and the data after follows a different distribution with parameters θ2
25.132

Given the observed data X, the probability of a changepoint at i i.e., P(δ = i|X), can be computed using Bayes’133

rule:134

P(δ = i|X) ∝ P(X|δ = i)P(δ = i), (1)

where P(X|δ = i) is the likelihood of the data given a changepoint at index i, and P(δ = i) is the prior probability135

of a changepoint at index i before observing the data. Equation 1 allows the decision-maker to update their belief136

about the presence of a changepoint by considering both the evidence from the data and any prior assumptions about137

where changepoints might occur.138

In the simplest case, the decision-maker a priori assumes that each point in time is equally likely to be a changepoint139

and uses a uniform prior for P(δ = i). The likelihood P(X|δ = i) depends on assumptions about the data’s underlying140

distribution.141

For binary data, we assume a Bernoulli distribution, modeling outcomes with two possible values, such as success or
failure. We further assume that each observation is independent and identically distributed (i.i.d.) within segments.
If there is a changepoint at i, then {x1, . . . ,xi} are sampled from a Bernoulli distribution with parameter θ1, and
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Figure 3. Simulation results. An illustration of how gradual changes are perceived as sudden changes in binary data. The top
panel shows the changepoint probability output of the Bayesian model for various correlation levels in temperature data. In
most graphs, there is a somewhat uniform distribution of changepoint probabilities, with no specific concentration at any point.
In contrast, the bottom panel shows that binary data results in more pronounced peaks in the changepoint probability
distribution, particularly as correlation increases. Note that these are example illustrations and do not represent all graphs used
in the simulation experiment.

{xi+1, . . . ,xN} are sampled from a Bernoulli distribution with parameter θ2. Using Equation 1, the probability for a
changepoint at i in the binary setting can be calculated as follows:

P(δ = i|X) ∝ P(δ = i) ·
i

∏
t=1

P(xt |θ1) ·
N

∏
t=i+1

P(xt |θ2), (2)

where ∏
i
t=1 P(xt |θ1) is the likelihood of the data {x1, . . . ,xi} being generated from a Bernoulli distribution with142

parameter θ1 and ∏
N
t=i+1 P(xt |θ2) is the likelihood of the data {xi+1, . . . ,xN} being generated from a different143

Bernoulli distribution with parameter θ2.144

For continuous data, we assume a Normal distribution, which is suitable for modeling continuously varying data
like temperature readings. If a changepoint is present at i, the data before the changepoint is modeled by a Normal
distribution with mean µ1 and variance σ2, and the data after i follows a Normal distribution with a different mean
µ2 and the same variance σ2. The probability for a changepoint is calculated as follows:

P(δ = i|X) ∝ P(δ = i) ·∏i
t=1

1√
2πσ2 exp

(
− (xt−µ1)

2

2σ2

)
·∏N

t=i+1
1√

2πσ2 exp
(
− (xt−µ2)

2

2σ2

)
. (3)

Equations 2 and 3 enable us to calculate the probability of a changepoint at any point i for both binary and continuous145

settings (refer to the SI for detailed derivations and final equations).146

Explaining the illusion of changepoints in binary data147

To simulate changepoint detection in binary and continuous data, we first generated 30 pairs of gradually changing148

time series data (both binary and continuous) across various matched correlation levels, ranging from 0.1 to 0.7. We149

then computed the changepoint probability for the different points in the data (using Equations 2 and 3).150

Similar to the results of Experiment 2, we found that the entropy of the changepoint probability distributions for151

the binary time series (mean Entropy = 2.9, s.d. = 0.8) was lower compared to the entropy of the changepoint152

probability distributions for the continuous time series (mean Entropy = 3.3, s.d. = 0.5; t(58) =−2.79, p = 0.01).153
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Figure 4. Results of Experiment 3 with real-world temperature and freeze data. Violin plots display participants’ ratings
of climate change impact, temperature change, and freeze frequency change for the two conditions. Means are indicated by
black dots, and vertical lines represent standard errors. Participants in the “binary” condition again rated the impact of climate
change higher compared to the “continuous” condition.

That is, similar to the human participants, the Bayesian model is also more likely to detect changepoints in binary154

data, as evidenced by higher probabilities and sharper peaks at specific points, alongside generally lower entropy.155

As an illustration, Figure 3 plots the changepoint probability output of the Bayesian model for different binary156

and continuous graphs across various correlation levels. The changepoint probability distribution exhibits more157

pronounced peaks in binary data, and the model is more likely to detect changepoints in binary data, particularly as158

correlation increases.159

One key reason why the probability of changepoints is lower in continuous data is that gradual shifts are often160

“absorbed” by the variance of the normal distribution. To further investigate this, we conducted an additional161

simulation where we fitted the continuous data using a normal distribution with a variance significantly smaller162

than the true variance of the data (we used σ2 = 1, which is 2.6 times lower than the true variance). Here, the163

model became more sensitive to subtle changes and resulted in a more peaked posterior distribution of changepoint164

locations (refer to SI for details). This suggests that the apparent changepoints in binary data may be an inherent165

feature of binary patterns, whereas continuous data, with its implicit variance, naturally smoothes out gradual166

changes.167

Experiment 3: The binary climate effect extends to real-world climate data168

So far, to study people’s perception of climate change in binary and continuous data, we have used simulated data in169

our experiments. To increase the ecological validity of our findings, we next conducted a replication of Experiment 1170

with real-world lake freeze and temperature data.171

We first gathered time series data on lake freeze and mean winter temperature for five intermittently-freezing lakes172

that are at high risk of ice loss. To identify these lakes, we selected the five lakes with the strongest correlations in173

lake freeze over time from a global database of intermittently freezing lakes26, 27. We then extracted historical mean174

winter temperatures for these lakes from the Berkeley Earth gridded temperature database28, matching each lake’s175

latitude and longitude coordinates with the corresponding temperature grid box (see Methods).176

Participants (N = 247) then took part in an experiment similar to Experiment 1. In the “binary” condition, participants177

viewed one of the five graphs depicting lake freeze history, while in the “continuous” condition, they saw one of the178

five graphs showing winter temperature history. Unlike Experiment 1, where participants were informed that the179

data came from a fictional town, this time, they received contextual information about the actual lake, including its180

location and recreational activities offered in the lake (e.g., ice skating, ice fishing, or boating).181
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As shown in Figure 4, the perceived impact of climate change was significantly higher amongst participants in the182

“binary” condition (mean (M) = 7.76, s.d. = 2.0) compared to participants in the “continuous” condition (M = 6.71,183

s.d. = 2.3; t(233) = 3.76, p < 0.0001). Further, there was a significant difference in the perception of change184

in temperature between participants in the “binary” condition(M = 8.0, s.d. = 1.8) and “continuous” condition185

(M = 6.6, s.d. = 2.2; t(233) = 5.36, p < 0.0001). Similarly, participants in the “binary” condition (M = 8.0, s.d.186

= 1.9) perceived the lake freeze frequency to have changed more significantly compared to those in the “continuous”187

condition (M = 6.3, s.d. = 1.7; t(233) = 6.28, p < 0.0001). These results extend our findings to real-world lake188

freeze and temperature data, orienting our findings toward practical climate communication applications. We also189

refer the readers to the SI for a replication of this experiment.190

Discussion191

For a long time, many scientists, including the authors of this study, held onto the hope that when the impacts of192

climate change became undeniable, people and governments would finally act decisively7. Perhaps a devastating193

hurricane, heat wave, or flood–or even a cascade of disasters–would make the severity of the problem impossible194

to ignore, spurring large-scale action. Yet, our response continues to resemble the fate of the proverbial boiling195

frog, failing to notice the creeping danger until it’s too late19. The most unsettling possibility is that we might196

continue sleepwalking into disaster; the atmosphere will keep growing unstable, but not dramatically or fast enough197

to command sustained attention, allowing climate change to be treated as a gradual background noise.198

Here, through multiple behavioral studies, we demonstrate that presenting climate data in binary terms can make199

the impacts of climate change more salient compared to continuous data. Gradual shifts in binary data often create200

the perception of sudden changes, amplifying the perceived impact. While our study shows how progress can be201

made in enhancing the salience of climate change–an essential first step toward more meaningful engagement and202

response–future work should investigate how this work can be extended to drive concrete action.203

There are immediate practical applications to these findings, particularly in the design and visualization of climate204

data. An extensive body of research has studied the cognitive processes underlying effective visualizations29–32
205

and highlighted the importance of effective climate data visuals33–38. Our study contributes to this literature by206

emphasizing the value of binary climate graphs and suggesting key research directions for improving climate207

communication.208

Beyond its practical implications, our work also makes significant theoretical contributions, particularly in under-209

standing how people reason about change. Detecting and responding to changes is crucial for decision-making, and210

psychologists have extensively studied how people identify changes in data patterns and when they tend to underreact211

or overreact24, 39–43. These studies typically involve detecting changes in non-stationary environments–where data212

suddenly shifts from one distribution to another. In contrast, our study examined data that gradually shifted over213

time without sudden changes. In doing so, we uncovered a novel bias: people perceive sudden shifts in gradual214

binary data more readily than in continuous data. This phenomenon is somewhat analogous to the “hot hand” fallacy,215

where people tend to see patterns in random sequences44. However, unlike the “hot hand” studies, which explore216

perceptions of randomness45, 46, our study used clear, gradually increasing patterns and still found that people217

perceived abrupt changes in binary data. By focusing on how people interpret slowly changing data and identifying218

key biases in these patterns, our study enhances the understanding of change detection and response, complementing219

prior research focused on more abrupt or dramatic changes.220

While our study primarily focused on how perceptions of changepoints might amplify the perceived impacts221

of climate change in binary data, it’s important to recognize that there are several other factors that could be222

contributing to this heightened perception. One reason may be that binary data graphs require less mental effort and223

are computationally easier to parse due to fewer value comparisons21, 47–50. Another possibility is that lake freeze224

graphs might elicit stronger emotional responses than temperature graphs (e.g., people might relate more to the225

consequences of decreased freeze, such as fewer opportunities for ice-skating). This is consistent with research226
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showing that emotional valence affects climate judgments22, 51–53 as well as perceptions of changes and tipping227

points54, 55. To investigate this further, we conducted an additional experiment (N = 200; see SI for details) where228

we varied the emotional valence of binary graphs by using high valence (“Froze” vs. “Did not Freeze”) versus low229

emotional labels (“Above 29◦ F” versus “Below 29◦ F”) for the same binary data. We found that valence partially230

explains our results when trends were unclear. However, when trends were more evident, participants exposed to231

both high and low valence graphs perceived climate change impacts similarly. This suggests that, in cases of clear232

trends, the illusion of changepoints may play a more prominent role in driving the amplified perception of climate233

change.234

One reason why perceiving changepoints in binary data might enhance the perception of climate change is that235

these changepoints can signal a tipping point, leading people to believe that significant changes have occurred54–56.236

Additionally, recent research shows that people have a “binary bias”, where they tend to categorize continuous237

data into binary terms, which then biases their decision-making57, 58. Our study contributes to this literature by238

documenting a specific bias within the context of binary data perception.239

While our study focused on how different formats of climate data affect perceptions of climate change impacts, it is240

also crucial to examine how people respond to these changes over time. A significant barrier to climate action is that241

people tend to rapidly adapt and habituate to worsening environmental conditions59, 60. This tendency to adjust to242

new “normals,” whether positive or negative, is a pervasive aspect of human behavior61, 62. Future research should243

explore how sensitivity to persistent environmental changes evolves and whether binary data patterns could help244

mitigate such adaptation. For instance, would people be less likely to become accustomed to a lake that has abruptly245

stopped freezing or a town that has suddenly become much hotter?246

Another limitation of our study is that participants observed the data in a single sitting and processed it retrospec-247

tively. In real-world settings, people experience climate change not only retrospectively (e.g., via graphs or media248

communications) but also through their direct, lived experiences, encountering data incrementally over time rather249

than all at once. Future research should investigate climate change perception when data is presented sequentially, as250

this approach could more accurately reflect how individuals encounter and process climate information in their daily251

lives.252

Combating climate change apathy is a vital step towards slowing the progression of warming. We posit that building253

a comprehensive understanding of how people reason about change is key to overcoming this apathy. Given that254

climate impacts are often non-linear and threshold-bound63, 64, we need more strategic communication. Rather than255

warning the frog that the water is warming gradually, we should define a clear threshold for unacceptable conditions.256

It’s a straightforward binary variable.257

Methods258

Generation of binary and continuous climate data259

For our experiments, we generated paired time series with 80 data points each across a correlation range of 0.1 to260

0.7. Each pair included a binary and a continuous time series with matched correlations.261

To generate the binary data with the desired correlation, we employed an iterative algorithm that adjusted the slope262

and intercept of a linear model until the correlation fell within the specified range. The slope was determined263

through a linear search, and the y-intercept was set so that the probability of freezing was 0.5 at the midpoint of264

the time series, ensuring a smooth, gradual change in probability over time (refer to the SI for the algorithm’s265

pseudo-code).266

For each binary time series, we generated the corresponding continuous data by applying a linear transformation to267

exactly match the correlation level (refer to SI for details). The transformed continuous data was then adjusted to268

match the mean and variance of winter temperatures from the Berkeley Earth dataset28 for 31 intermittently freezing269

lakes26. All experiment stimuli and the code to generate them are publicly available here: https://github.c270
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om/graliuce/climate_change_detection/tree/main/experiment_stimuli271

Experiment 1272

For the experiment, we first generated 18 paired time series across the correlation range of (0.1−0.7) for a total of273

36 time series. We then recruited 799 US-based participants from the online research platform Prolific and paid them274

US$0.40 for participation (our study took approximately 2 minutes to complete). All experiments were approved by275

Princeton’s Institutional Review Board. For this and the following experiments, informed consent was obtained276

from all participants before the experiments began.277

Following the pre-registered exclusion criteria, we removed participants who did not pass a simple attention check278

question or those who viewed the graphs for less than two seconds. This led to the exclusion of 33 participants,279

leaving a final sample of 766 participants (N = 379 in the “continuous” condition and N = 387 in the “binary”280

condition). Code for reproducing the results of all experiments is available here: https://github.com/gra281

liuce/climate_change_detection/tree/main282

Participants were randomly assigned to either the “continuous” or “binary” condition. In the “continuous” condition,283

they viewed one of 18 continuous graphs, randomly sampled, with the y-axis labeled as mean winter temperature284

and the x-axis representing years (1939−2019). In the “binary” condition, participants saw one of 18 binary graphs,285

randomly sampled, with the y-axis indicating whether the lake froze and the x-axis showing years (1939−2019).286

After viewing the graphs, participants in both conditions were asked to provide, on a scale of 1−10, their subjective287

rating in response to the following questions:288

1. In your view, how much do you think Townsville has been affected by climate change? (where 1 indicates289

“not affected at all” and 10 indicates “extremely affected”).290

2. In your view, how much do you think the temperature of Townsville has changed in the last 50 years? (where291

1 indicates “remained the same” and 10 indicates “changed a lot”).292

3. In your view, how much do you think the frequency at which the lake freezes has changed in Townsville in the293

last 50 years? (where 1 indicates “remained the same” and 10 indicates “changed a lot”).294

Question 1 measured perceptions of the overall impact of climate change, while Questions 2 and 3 evaluated295

perceptions of changes in temperature and lake freezing frequency.296

Experiment 2297

For the experiment, we generated 3 pairs of time series, totaling 6 time series. Each pair covered a distinct correlation298

range: one with low correlation (0.1–0.3), one with medium correlation (0.3–0.5), and one with high correlation299

(0.5–0.7). We then recruited 398 US-based participants from the online research platform Prolific, paying US$0.40300

for participation (the study took approximately 2 minutes to complete). Following our pre-registered exclusion301

criteria, we removed participants who failed a simple attention check or viewed the graphs for less than two seconds,302

resulting in the exclusion of 8 participants. This left a final sample of 392 participants (N = 185 in the “continuous”303

condition and N = 207 in the “binary” condition).304

Participants then took part in an Experiment similar to Experiment 1, with two additional questions. First, after305

viewing the “binary” or “continuous” graph, participants were asked whether they observed a changepoint, choosing306

from “Yes,” “No,” or “Not sure.” A changepoint was defined as “a point showing a pronounced deviation from the307

typical pattern of temperature or freeze data.” Second, after answering this question, participants were then asked to308

use a slider to indicate the year where they noticed the most pronounced shift from the typical pattern.309

Simulation 1310

For the simulation, we generated 30 pairs of time series data across the correlation range [0.1,0.7], with 5 pairs per311

interval of 0.1 correlation increase, for a total of 60 time series. We then used our model to compute the changepoint312
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probability for each point in every time series and evaluated changepoint detection performance between continuous313

and binary data.314

Experiment 3315

We recruited 247 US-based participants from the online research platform Prolific, paying US$0.40 for participation316

(the study took approximately 2 minutes to complete). We removed participants who failed a simple attention check317

or viewed the graphs for less than two seconds, resulting in the exclusion of 12 participants. This left a final sample318

of 235 participants (N = 119 in the “continuous” condition and N = 116 in the “binary” condition).319

This experiment aimed to replicate Experiment 1 using real-world lake freeze and temperature data. We first obtained320

publicly available ice-on and ice-off records for 31 intermittently freezing lakes across the Northern Hemisphere26,321

including freeze records for Lake Vattern from the NSIDC Global Lake and River Ice Phenology Database27. We322

then filtered the data to include only lakes with more than five no-freeze years in the 20th century, leaving 20 lakes.323

From these, for our experiment, we selected the five lakes with the highest correlations in freeze trends over time.324

Historical mean winter temperatures (December, January, February) for these lakes were extracted from the Berkeley325

Earth gridded temperature database28, matched to the lakes’ latitude and longitude coordinates.326

Participants took part in a similar experiment to Experiment 1 but were given additional information about the lake327

relevant to the stimulus, including details about the location and recreational activities offered in the lake.328

Data Availability329

Anonymized participant data for all our experiments is available at: https://github.com/graliuce/cl330

imate_change_detection/331

Code Availability332

The code to run the analyses and reproduce the figures is available on GitHub: https://github.com/grali333

uce/climate_change_detection/334
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